Boundary Fragment Matching and Articulated Pose Under Occlusion
نویسنده
چکیده
Silhouette recognition can reconstruct the three-dimensional pose of a human subject in monocular video so long as the camera’s view remains unoccluded by other objects. This paper develops a shape representation that can describe and compare partial shapes, extending the silhouette recognition technique to apply to video with occlusions. The new method operates without human intervention, and experiments demonstrate that it can reconstruct accurate three-dimensional articulated pose tracks from single-camera walking video despite occlusion of one-third to one-half of the subject.
منابع مشابه
A Study on Human Gaze Detection Based on 3D Eye Model
Robust fake iris detection p. 10 A study on fast Iris restoration based on focus checking p. 19 A spatio-temporal metric for dynamic mesh comparison p. 29 Facetoface : an isometric model for facial animation p. 38 Matching two-dimensional articulated shapes using generalized multidimensional scaling p. 48 Further developments in geometrical algorithms for ear biometrics p. 58 Composition of com...
متن کامل3D Closed Loop Boundary Detection and 6 DOF Pose Estimation
For vision guided robotic assembly, one of the fundamental enablers is the robust estimation of 6 degree-offreedom (DOF) pose of industrial parts or subassemblies. In this paper, we present a method to estimate 6 DOF pose of automotive sheet metal panels using 3D closed loop boundary (CLB) features from a stereo vision. The 3D CLBs extracted are used to identify the corresponding CAD model and ...
متن کاملLow Density Feature Point Matching for Articulated Pose Identification
We describe a general algorithm for identifying an arbitrary pose of an articulated subject with low density feature points. The algorithm aims to establish a one-to-one correspondence between two data point-sets, one representing the model of an observed subject and the other representing the pose taken from freeform motion of the subject. We avoid common assumptions such as pose similarity or...
متن کامل3D Face Recognition Using Geodesic Facial Curves to Handle Expression, Occlusion and Pose Variations
this paper illustrates the use of radial facial curves on 3D meshes to mode facial deformation caused by expression, occlusion and variation in poses and to recognize faces despite large expression, in presence of occlusion and pose variations. Here we represent facial surface by indexed collection of radial geodesic curves on 3D face meshes emanating from nose tip to the boundary of mesh and c...
متن کاملStochastic Tracking of 3D Human Figures Using 2D Image Motion
A probabilistic method for tracking 3D articulated human gures in monocular image sequences is presented. Within a Bayesian framework, we de ne a generative model of image appearance, a robust likelihood function based on image graylevel di erences, and a prior probability distribution over pose and joint angles that models how humans move. The posterior probability distribution over model para...
متن کامل